Native temperature regime influences soil response to simulated warming
نویسندگان
چکیده
Anthropogenic climate change is expected to increase global temperatures and potentially increase soil carbon (C) mineralization, which could lead to a positive feedback between global warming and soil respiration. However the magnitude and spatial variability of belowground responses to warming are not yet fully understood. Some of the variability may depend on the native temperature regimes of soils. Soils from low temperature climates may release more C than will soils from high temperature climates because soils in cold climates are often C-rich and may experience more warming. We investigated whether soils from low native temperatures respired more than did soils from high native temperatures. We collected intact soil cores from three elevational transects along a latitudinal gradient in the forests of southern Appalachian Mountains. Soil cores were incubated for 292 days at low, medium, and high temperatures (separated by 3 C each) with diurnal temperature and light regimes that simulated realistic temperature changes likely to occur within the next century. The native temperature regimes of soils negatively influenced soil respiration, such that soils from cold climates respired more in response to experimental warming than did soils from warm climates. Conversely, soils from warm climates mineralized the largest proportion of available soil C and available soil nitrogen in response to warming. Across all soils, modest experimental warming increased soil respiration, the proportion of available soil C that was being respired (respiration/soil C), and the proportion of soil nitrogen that was mineralized (N min/soil N). Taken together, these data suggest that soils from low native temperatures have a greater potential to release C in response to climate warming because the C stocks are larger and respiration rates will be higher than those in soils from high native temperatures. 2013 Published by Elsevier Ltd.
منابع مشابه
BIODESULFURIZATION OF SIMULATED LIGHT FUEL OIL BY A NATIVE ISOLATED BACTERIA BACILLUS CEREUS HN
In the present paper, the biodesulfurization of simulated light fuel oil (i.e., dibenzothiophene (DBT) in dodecane) and untreated kerosene with a high total sulfur content has been studied by a native isolated bacterium named Bacillus cereus HN. The influences of various parameters such as the reaction temperature (T), biocatalyst cell density, oil phase fraction (OFP), and initial DBT concentr...
متن کاملLight and Heavy Fractions of Soil Organic Matter in Response to Climate Warming and Increased Precipitation in a Temperate Steppe
Soil is one of the most important carbon (C) and nitrogen (N) pools and plays a crucial role in ecosystem C and N cycling. Climate change profoundly affects soil C and N storage via changing C and N inputs and outputs. However, the influences of climate warming and changing precipitation regime on labile and recalcitrant fractions of soil organic C and N remain unclear. Here, we investigated so...
متن کاملInteractive effects of global warming and ‘global worming’ on the initial establishment of native and exotic herbaceous plant species
The spread of exotic earthworms (‘worming’) and rising temperatures are expected to alter the biological, chemical and physical properties of many ecosystems, yet little is known about their potential interactive effects. We performed a laboratory microcosm experiment to investigate the effects of earthworms (anecic, endogeic, epigeic, or all three together) and 4°C warming on soil water conten...
متن کاملChanges in soil water dynamics due to variation in precipitation and temperature: An ecohydrological analysis in a tallgrass prairie
[1] There is considerable evidence that future global climate change will increase temperature and alter precipitation regime. To better understand how these factors will influence soil water dynamics, it is imperative to use multifactorial experiments. A 1 year “pulse” experiment, with 4°C warming and a doubling in precipitation, was performed to evaluate the changes in soil moisture dynamics....
متن کاملRising soil temperature in China and its potential ecological impact
Global warming influences a series of ecological processes and ecosystems' stability. Although comprehensive studies have been done to investigate responses of various ecosystem processes to rising air temperatures, less is known about changes in soil temperatures and their impact on below-ground processes, particularly in deep layers. Herein, we used 50 y of temperature data (1962-2011) from 3...
متن کامل